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Abstract. We calculate rovibronic intrashell spectra of the triply highly excited atomic hydrogen dianion,
helium anion and lithium atom, within a simple semiclassical model. Zero-order electronic energy levels
and half-lives are calculated for a number of principal quantum numbers and approximate thresholds for
the appearance of vibronic modes are estimated. Since no quantum-mechanical and experimental data
are available for the highly excited levels (N > 5), where the semiclassical models apply, no comparison
with other results are possible at present. The problem of comparing semiclassical and quantum-mechanical
calculations for moderately large quantum numbers, which seem attainable by the present day experimental
technique, has been discussed.

PACS. 31.50.+w Excited states – 31.25.Jf Electron-correlation calculations for atoms and ions: excited
states

1 Introduction

Multiply excited atoms have been the subject of intense
investigations in the last three decades, for they exhibit
most explicitly inter-electron correlation effects. In par-
ticular, doubly excited states have been widely used as a
means of demonstrating the crucial role of electron cor-
relation. In recent years we witness a shift towards triply
and even quadruply excited systems, where the correlation
effects are even more pronounced.

Watanabe and Lin [1] classified possible triply excited
states as isomorphic to molecular D3h symmetry. Their
model was restricted to the intrashell states, more pre-
cisely to the model with three electrons on a sphere. A
number of possible bending modes was identified and the
energy levels grouped into manifolds resembling the rota-
tional structure of a symmetric top. In a series of papers
Bao and collaborators have analyzed a number of model
triply excited states (see [2] and references therein), within
the quantum-mechanical approach. In [3] possible modes
of internal motions in a model system of the 2Se states
have been analyzed. In the model radial modes are sup-
pressed and possible configurations within the same shell
are examined. It turns out that three co-plane structures
dominate the triply excited configurations: (irregular) tri-
angle, the straight rod and the sharp wedge (see Fig. 4a-c
in [3]). If all three electrons have parallel spins, as in 4So

state, plane structure appears again, among others possi-
ble configurations, this time as a equilateral triangle [4].
Since, however, all electrons have the same principal and
angular momentum quantum numbers, they are forced to
oscillate through the plane (see Fig. 4 in [4]). This model
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corresponds to what is known from the early semiclassi-
cal theory of two-electron system as Langmuir’s oscillatory
model (see e.g., [5–7] and references therein). These papers
have clarified the important issue of the internal degrees of
freedom and possible classification schemes. Further sym-
metry effects have been analyzed in [8] for low-lying in-
trashell states, within coplanar configurations. It should
be stressed that all above qualitative studies have used
ad hoc classical geometries of the relevant atomic states.

All concrete calculations carried out so far have
been applied to relatively low excited states, within the
quantum-mechanical approach. Resonances in He− within
Feshbach projection formalism have been studied by
Bylicki [9], who calculated the energy of 2s22p 2P o and
2s2p2 4P e states, which are situated just above the dou-
ble ionization threshold. For the former state the calcu-
lated energy is E = −0.80154 au. Nicolaides et al. de-
veloped a general ab initio method for treating multi-
ply (triply, quadruply etc.) excited (resonant) states [10].
They used square-integrable functions for the so-called
open-channel–like correlating configurations, which go be-
yond the standard Feshbach theory. They found a num-
ber of new triply excited states, like 2s2p2 P and 2p3 2Do,
which appear above both singly and doubly excited con-
figurations. Triply excited states abound in electron-atom
scattering and are measured by many authors, but the
identification of these usually mutually very close states is
not straightforward (see,e.g., [10] and references therein).
Komninos and Nicolaides have extended these calculations
to the quadruply excited atoms [11], finding that as the
fourfold ionization threshold is approached the 5So states
tend to assume the tetrahedral structure. Taken together
with earlier ab initio calculations findings for double
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(linear, Wannier-ridge configuration, see, e.g., [12]) and
triple (equilateral triangle) ionization ladders (see, also,
e.g., [1,13]) it turns out that in the limit of the total
fragmentation threshold multiply excited states follow the
most symmetrical configurations. These findings, in turn,
corroborate earlier conjectures that there is a strong sym-
metry across the total ionization threshold regarding the
small-energy Coulombic systems, based on the classical
dynamics considerations [14].

We mention also theoretical works by Bachau [15] on
(n = 3) triply excited states of multicharged ions and by
Gou and Chung [16] on the triply excited lithium-like ions.

Semiclassical theory has passed a long way from Bohr’s
Old Quantum theory to the present-day status. As noted
by Percival and collaborators [5,17] the failure to describe
few-electron atoms, notably helium, should be attributed,
what now has been realized, to improper quantization
rules. These have been elucidated by Einstein and other
authors and the present state of affairs has been fairly
well represented by EBK (Einstein-Brillouin-Keller) the-
ory. The very application of the semiclassical methods,
however, is still less straightforward than the case with
the quantum-mechanical calculations. It is in order here
to compare both approaches regarding the practical ap-
plications in atomic physics.

Quantum-mechanics. i) Exact results: two-body Cou-
lomb systems (hydrogen-like atoms, etc.), linear harmonic
oscillator; ii) accurate analytical and numerical results:
three-body systems (helium atom, H+

2 , etc.); iii) approx-
imate analytical methods: four-body and higher-order
atomic systems (lithium, H2, etc.).

Semiclassical theory (spin variable usually ignored).
i) Exact results: the same as for quantum mechanics (cor-
respondence identities) [18,19]; ii) accurate results: same
as for quantum mechanics, but only for large relevant
quantum numbers (correspondence principle) [17]; iii) ap-
proximate results—same as for quantum mechanics.

A proper application of the semiclassical theory has
greatly improved the accuracy of the ground-state helium
(nonrelativistic) calculations [5]. As for the doubly excited
two-electron systems, the literature is abundant and we re-
fer the interested reader to review articles (e.g., [20,21]).
Two general remarks, however, about the applicabilities of
the two approaches seems in order here. First, quantum-
mechanical calculations are limited by our mathematical
(in)abilities only, whereas the semiclassical methods must
rely heavily on a suitable choice of the model. The lat-
ter means that a relevant choice of the underlying classi-
cal configuration must be made, since usually the aim of
including all possible classical paths appears beyond our
reach. Second, quantum treatments are feasible for the
low-lying states only, whereas the semiclassical calcula-
tions are expected to yield good results for highly excited
states. In this sense two approaches are complementary.
The principal aim (and difficulty) appears thus the in-
termediate region of moderately excited states, with not
too large quantum numbers. For it is this region where
the validity of the semiclassical approach appears ques-
tionable and should be tested by the quantum-mechanical

calculations. The latter appear, in their turn, very cum-
bersome even for the low-lying states and the compari-
son is not easy to achieve. Generally, this intermediate
region lies within the n∗ = 5–8 span, where n∗ is the
smallest effective principal quantum number ascribed to
individual system constituents. Another hindrance to the
comparison of semiclassical and quantum-mechanical re-
sults in this region is the empirical fact that the latter
calculations are made, as a rule, for the low total angu-
lar momentum values (these are, usually, S-states). These
quantum-mechanical electron configurations are the fur-
thest from the semiclassical ones, which involve generally
large total angular momenta. The reason for the latter is
that not only that large quantum numbers are required
for the semiclassical approach, but the electron correla-
tion effects, which are crucial for ensuring the configu-
ration stability, demand “coherent addition” of the indi-
vidual momenta. It is this requirement which forces the
three-electron systems either to remain in plane (coplanar
case), or to oscillate in phase through the plane [4].

The study of negative ions has both practical and con-
ceptual importance. In the case of the simplest system,
H2−, there appears the existence problem, which has not
yet been solved in a satisfactory manner (see, e.g., [22,
23], and references therein). Hydrogen dianions have re-
cently attracted much attention both experimentally [24,
25] and theoretically [27,29] (see, also recent paper [26] on
the general problem of maximal electronic charge bound
by atomic nuclei, and references therein). The problem as
to the possible existence of these dianions, either as stable
or transient systems, does not seem to be settled down.
Early observations in the e + H− scattering indicated the
presence of H2− resonances and a quick theoretical cal-
culations corroborated these experimental findings (see,
e.g., [28] and references therein). Subsequent theoretical
investigations, however, alternated between positive [27],
and negative [29,30] conclusions. However, the very re-
cent complex coordinate rotation calculations reveal the
existance of at least two resonance states [22].

As for the (metastable) helium anion, with its small
electron affinity I = 0.076 eV (He[1s2s2p]), electron scat-
tering processes appear abundant in the resonance states.
These are, however, mostly doubly excited states, which
have been the subject to numerous investigations, both
experimental and theoretical (see, e.g., [31] for the low-
lying and [32] for highly excited states, and references
therein). The situation is even less favourable with the
lithium atom with regard to the multiply excited states,
though a number of experimental and theoretical investi-
gations have been recently reported (e.g., [33]).

All those theoretical and experimental studies were
mainly concerned either with the ground, or low-lying
excited states. As the quantum-mechanical calculations
mentioned above indicate, multiply excited states tend to
acquire highly symmetric structures, with many degrees
of freedom suppressed, which make them close to single
electron configurations. This implies that only global fea-
tures of highly excited states are both discernable and
relevant. All these properties make these states amenable
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to the semiclassical theory. Here we investigate the triply
highly excited states within the semiclassical approach,
and examine the physical properties of such a model. We
carry out semiclassical investigations of the possible in-
trashell H2−, He− and lithium states, within the so-called
coplanar model. In the next section we set up the classical
three-electron model and in Section 3 calculate the energy
spectrum and the corresponding lifetimes of the states. In
the final Section 4 we discuss the model and its further
prospects in describing few-electron systems.

2 The classical model—coplanar case

In [35] the semiclassical theory of highly excited three-
body atomic systems was applied in evaluating the rovi-
bronic spectra, including that of two-electron excitations.
Here we extend these calculations to the three-electron
system, which belongs to the quasi–four-body problem.
As is usual in setting up a semiclassical model, one starts
with a class of supposed underlying classical configura-
tions and then applies a relevant quantization procedure
to extract energy levels and other associated quantities. As
mentioned above, the number of these classes can be large
even for the simpler two-electron systems. One has to re-
strict himself to a class which appears sufficiently generic
and at the same time simple enough as to allow feasible
calculations. As mentioned above, these configurations are
endowed with some high symmetry. Plane configurations
are the first to satisfy these requirements.

This approach parallels, in fact, that of the quantum-
mechanical configuration interaction (CI) method, which,
in principle, should include an infinite number of bound
and continuum states for an accurate result. Singling out
one of all possible classical configurations corresponds to
retaining only one of the quantum-mechanical electron
configurations (that one is calculating), ignoring the cou-
pling to other configurations (configuration mixing). For
the highly excited states we know that the number of
neighbouring states (levels) appears enormous and the
standard quantum-mechanical approach would require a
prohibitive (both analytical and computational) time. For-
tunately, this complication appears advantageous once one
passes to the (semi)classical picture. For we know that
it is a superposition of many neighbouring states which
gives rise to forming a wave packet, which travels along a
Keplerian orbit, in the Coulomb case (see, e.g., [36] and
references therein).

Within this approach all electrons are treated on an
equal footing, which implies a choice of a configuration
endowed with maximum symmetry in the configuration
space. For the case at hand it amounts to the choice of
the equilateral triangle geometry, as shown in Figure 1,
for the plane case.

If the nucleus charge is Z, each of the electrons sees
an effective charge Zeff = Z − 1/

√
3 at the origin and

moves along a Keplerian orbit, always staying at the
vertex of an equilateral triangle. The latter rotates and
shrinks/expands as the electrons follow the elliptic orbits

Fig. 1. 2D configuration for the three-electron intrashell state
(schematic). Only one of three Keplerian orbits is shown.

around the centre of mass. The maximum angular momen-
tum of the single electron is �max =

√
−2E/3, where E is

the total energy of the system (E = 3ε). This corresponds
to the motion along the common circle, the case stud-
ied already by Bohr within the Old Quantum theory. The
latter is known to have yielded wrong quantized energy
levels for He and was quickly abandoned, as well as Som-
merfeld’s generalization to the � < �max (elliptic orbits).
However, it is well established now that the Old Quantum
i) could not provide exact results for the ground state in
principle and ii) the theory failed to yield reasonably accu-
rate answers mainly because of the applied inappropriate
quantum conditions (see, e.g., [19,5]).

Here, we consider Bohr’s circular configurations first.
If the total angular momentum is L, then one has (Lande’s
rule)

L = L +
1

2
, L = 0, 1, 2, . . . , Lmax . (1)

We calculate the potential for the hydrogen anion, for
the sake of illustration. Let the total energy of H2− be
E = −0.063 au, as computed by Sommerfeld et al. [27].
The effective potential attributed to the single electron is
then

Veff = −
Zeff

r
+

(
L +

1

2

)2
18r2

,

Zeff = 0.42265 (Z = 1) . (2)

The potential function is shown in Figure 2 for L =
6.233. Imposing that the potential minimum equals the
single-electron energy ε, one finds the corresponding pa-
rameters,

� = �max = 2.078 au, req =

(
L +

1

2

)2
9Zeff

. (3)

For the case at hand one has req = 10.22 ao (L = 5.733 in
Eq. (1)). (We note that the strict implementation of the
quantization conditions (1) provides for the ground state
level (L = 0) E = −9.63 au! The semiclassical model is
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Fig. 2. Effective potential for a single electron in H2− from
equation (2), for L = 6.233.

valid for large L values and is inappropriate, as expected,
to describe the H2− anion low-energy spectrum.)

For the noncircular orbits, one applies the general
quantization conditions (e.g., [17])∮

prdr = 2π

(
nr +

1

2

)
, nr = 0, 1, 2, . . . , (4)∮

pθdθ = 2π

(
�−m +

1

2

)
, � = 0, 1, . . . , nr, (5)∮

pφdφ = 2πm, |m| = 0, 1, . . . , � . (6)

For the motion in plane, m = 0 and one has

pr =
√

2(ε− V )− �2/2r2, V = −
Zeff

r
, � =

L + 1/2

3
,

(7)

so that (4) reads (see Fig. 2)

∫ ra
rp

√
2

(
ε +

Zeff

r

)
−

L + 1/2

18r2
= π(nr + 1/2), (8)

with perihelion and aphelion distances given by (e is the
orbit eccentricity, µ the reduced mass)

rp=
�2

1 + e
, ra=

�2

1− e
, e=

√
1 + 2�2ε/µ, �=

L + 1/2

3
,

(9)

We note that noncircular orbits (� ≤ �max) do not
provide anything new, as far as the energy spectrum is
concerned, since the energy is independent of the angular
momentum (for this symmetry!), because of the so-called
accidental degeneracy. Further, for large principal quan-
tum numbers n1, n2, n3 = n� 1 and the biggest possible
angular momenta �1, �2, �3 = n−1, elliptical orbits will ap-
pear practically indistinguishable from the circular ones.
Thus, we proceed with the circular electron orbits.

Fig. 3. Three-electron system configuration (see text). The
rotation axis is along the k vector).

We ignore the spin of particles, both as a quantum-
mechanical and dynamical variable. The former enters the
stage via Pauli’s exclusion principle, which in our case
would forbid strictly symmetrical configurations, or equiv-
alently the identical sets of quantum numbers (n, �,m).
However, for large values of n, � (m = 0 in our case) rela-
tively small deviations (like �1 = �2−1) would circumvent
the problem, still providing practically the same classi-
cal configurations. As for the dynamical effects, like the
spin-spin interaction, which in the classical approach re-
sults in small deviations from the trajectories calculated
in purely Coulombic potential, these effects are negligibly
small as long as the electrons are close to the equilibrium
positions, which for the large angular momenta are well
separated in space (see Eq. (9)). Thus we shall ignore all
terms in the Hamiltonian which involve dipole-monopole,
dipole-dipole, etc. interactions.

Besides the rotational motion the three-electron sys-
tem has additional degrees of freedom, deviations from
the corresponding equilibrium positions. If these devia-
tions are small, one can evaluate the rovibronic spectrum
for this circular configuration, as it was done for the two-
electron case [37]. Let all three electrons be situated at the
vortices of an equilateral triangle, as shown in Figure 3,
lying in XOY plane.

In analyzing the classical underlying configurations
we make use of the properties of the same systems in
the continuum, i.e. for small, positive total energies. As
discussed above, few-electron system configurations close
to the total fragmentation threshold exhibit many com-
mon features. In both cases electrons tend to assume the
most (possible) symmetrical configurations, thus minimiz-
ing the system potential energy function on the constant
hyperradius sphere. In the near-threshold ionization case
angular motion is suppressed and the radial mode appears
to be the dominant one. On the contrary, in the bound-
state case the radial mode is suppressed for the small Ke-
plerian orbit eccentricities, while the lateral motion dom-
inates (see, e.g., [14]).

Let the whole system rotate around the OZ-axis, so
that the centrifugal force balances the net Coulomb force.
We displace all electrons from this (leading) configuration,
by writing in the rotating frame of reference (we disre-
gard here the coupling between rotational and vibrational
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motions, i.e. the Coriolis force, cf., e.g., [38,39]):

ri = (r
(0)
i + ∆)nr + δnφ +∇k, ∆, δ,∇� r, (10)

where n and k are unit vectors in the corresponding di-
rections. We consider the kinematics of small variations,
by inserting equation (10) into Newton’s equations for the
electrons in the field of an infinitely heavy charge Z:

d2ri
dt2

=
∑
i�=j

rij
r3ij
− Z
ri
r3i

, i, j = 1, 2, 3 . (11)

At fixed r
(0)
i ≡ r one obtains for the small deviations the

matrix equation (see [37])

D2IF = BF, D2 ≡ r3
d2

dt2
, (12)

where I is the unit matrix, F is the column vector

F = {∆1,∆2, δ1, δ2,∇1,∇2}
T

, (13)

where T denotes the row transposition and

B =




b1 0 − 1
12 −

1
6 0 0

0 b1
1
6

1
12 0 0

1
12

1
6 b2 0 0 0

− 1
6 −

1
12 0 b2 0 0

0 0 0 0 −Z 0

0 0 0 0 0 −Z




, (14)

b1 = 2Z −
1

4
√

3
, b2 = −

(
Z +

1

4
√

3

)
. (15)

Solutions for ∇ deviations of equation (12) can be written
as

∇j = ∇ = C
(1)
θ eiωθt + C

(2)
θ e−iωθt,

ωθ =

√
λθ

r
3/2
eq

, λθ ≡ Z, j = 1, 2, 3, (16)

where C
(i)
θ are arbitrary constants.

For the in-plane deviations one has to diagonalize the
corresponding 4 × 4 submatrix of B from equation (12).
This, however, is not easy to achieve, since the correspond-
ing secular equation has two pairs of double roots,

λ1,2 =
1

2

[
Z −

1

2
√

3
+

√
9Z2 +

1

12

]
, (17)

λ3,4 ≡ λφ =
1

2

[
Z −

1

2
√

3
−

√
9Z2 +

1

12

]
. (18)

However, as calculations for the equivalent prob-
lem of the triple escape at small electron energies have
shown [37], the exact (after diagonalization) values differ
marginally from the zero-order approximation, i.e. when

Fig. 4. Vibronic angular frequences ratio. Full curve: the exact
formula (21); dashed curve: the approximate expression (22).

the (small) off-diagonal elements are ignored. An inclusion
of these off-diagonal elements would result in the mixed
terms appearance, which spoil the distinction between sta-
ble (vibronic) and unstable (radial) motions. Thus, lateral
electron motion would acquire a (small) unstable mode ad-
mixture, whereas the radial mode would include a small
vibrational component.

Hence, one has for the small deviations in the plane:

∆j = ∆ = C(1)
r eλrt + C(2)

r e−λrt, λr =

√
λ1

r
3/2
eq

,

j = 1, 2, 3, (19)

δj ≡ δ = C
(1)
φ eiωφt + C

(2)
φ e−iωφt, ωφ =

√
−λφ

r
3/2
eq

,

j = 1, 2, 3, (20)

where C(i) are arbitrary constants. From equations (17,20)
one has (

ωθ

ωφ

)2
=

2Z

1

2
√

3
+

√
9Z2 +

1

12
− Z

, (21)

so that one has an approximate estimate:

(
ωθ

ωφ

)2
=

1

8Z
√

3
. (22)

In the large-Z limit both frequencies merge and one
has a degenerate case, when electrons move along circu-
lar orbits, around the equilibrium positions, in the rotat-
ing reference system. This is to be compared with two-
electron systems, when the degeneracy appears at any Z,
and the three-body system can be considered perform-
ing rotational motion around an axis in the XOY plane,
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which in its turn rotates around the OZ-axis (see [37] and
references therein). In Figure 4 we plot the exact ratio
function (21) and the approximate expression (22), as a
function of the nucleus charge Z. One can see that the
near-degeneracy is attained even at the smallest Z = 1
value (0.9278).

3 Rovibronic spectra calculations

Before we proceed with calculations, we estimate the re-
gion of applicability of our first-order perturbation meth-
od. To ensure the harmonicity conditions (see Eq. (10))
we require that the oscillation amplitudes remain small
compared with the common radius of the orbits. One can
estimate this amplitude by equating the harmonic oscilla-
tor energy with the potential energy at the turning point
(r = a):

1

2
ka2 =

(
m +

1

2

)
ω, k = ω2,m = 0, 1, 2, . . . . (23)

From equation (3) one has for a� req the (approximate)
harmonicity condition, accounting for equations (17,20):

L +
1

2
o 6

√√√√√ 1
√

3
− Z

λφ,θ

(
m +

1

2

)
, m = 0, 1, 2, . . . , (24)

where o means larger by two orders of magnitude. As
one can infer from equation (19), motion along the r-
coordinate appears unstable and small initial deviations
from the equilibrium positions grow exponentially in time.
In the near-threshold problem it is this instability that de-
termines the threshold law (see, e.g., [37]). In the bound-
state case, λr plays the role of Lyapunov exponent (cf.,
e.g., [40] for the two-electron case), and is inversely pro-
portional to the half-time τ of the excited level (cf.,
e.g., [41]):

τ =
ln 2

λr
. (25)

From equations (3) and (19) one sees that the Lyapunov
exponents diminish as the level is more excited, so that
the stability of the orbit (and consequently the half-life τ)
increases. This is the general result for multiply excited
states (see, e.g., [42] and references therein; cf. also [43,
32]). Also, from equations (3,16) and (25) one has for the
level half-widths

Γ ∼
1

n3
, Lmax ≈ n� 1, (26)

that is in accordance with earlier findings for doubly ex-
cited states [41] (but see also [44]).

One can quantize the corresponding energy levels by
making use of the (implicit) formula due to Miller [45]:

E = S−1
[
2π(n + λ/4)

]
+
n−1∑
i=1

(mi +
1
2 )~ωi(E),

n = 1, 2, . . . , mi = 0, 1, 2, . . . , (27)

where (operator) S is the action along a periodic orbit,
and λ is the number of turning points on the orbit. If T is
the period, νi = ωiT is the so-called stability index, where
ωi are the normal-mode oscillation frequencies, around the
periodic orbit. The first member in (27) corresponds to the
n-kvanta energy along the orbit, while each member of
the sum represents the energy of mi kvanta in i-th normal
mode perpendicular to the orbit. Formula (27) is exact in
the case of separable systems, if the oscillations around
the orbit are harmonic. We note here that formula (27)
disregards the intermode coupling too (see above).

Before presenting specific results, a few remarks are in
order. Besides the general remark that the experimental
evidence and theoretical calculations are still confined to
the low-lying excited states, there is the additional prob-
lem of identifying states to be compared with the semiclas-
sical calculations. As shown in the case of double excita-
tions, the standard independent-particle picture fails and
new, more appropriate state designations (that is, sets of
quantum numbers) have been adopted (see, e.g., [1] and
references therein). In the case of triple excitations, at-
tempts to devise similar classification schemes have been
made, but up to now the situation is not yet as advanced
as the case with double excitation is. What one encounters
with the quantum-mechanical and experimental results is
a mixture of usually large number of the independent-
particle configurations, associated with particular energy
levels. On the other hand, semiclassical states appear pure
states from the quantum-mechanical point of view.

A number of the classification schemes proposed by
some authors, within the quantum-mechanical theory, is
restricted to the electrons situated on a sphere, as men-
tioned in the introduction. While this approach is useful
in the qualitative analysis, it is not a realistic representa-
tion of the actual physical situation. Our model deals also
with electrons zero-order paths on the circle, but it is a
choice of a possible classical configuration, rather than an
imposed constraint.

3.1 Hydrogen dianion

We estimate first the (approximate) thresholds for the ap-
pearance of the harmonic vibrational modes. If one takes
1
5 � 1, then it follows that for the case in hand (Z = 1)
the above approximation holds for the lowest, ground state
harmonic energy m = 0, if L > 37.50 and similarly, for
m = 1 if L > 137. In our case the zero-energy is that of
the electrons circling around the nucleus along the com-
mon circular orbit. Up to approximately L = 38 the total
energy consists only of this rotational part. Starting from
L = 38 we have the oscillatory energy superimposed over
the rotational one. In Table 1 we present some of the sys-
tem characteristic (classical) quantities.

We give the value for the half-life of the lowest (n = 1)
level, though, of course, quantum-mechanically the state
is stable (i.e. τ should be infinite). The first (n = 1–4)
levels are quoted for the sake of completeness, for the
semiclassical theory does not apply to these states. We
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Table 1. Semiclassical model for H2− dianion. All quantities are in atomic units. Lmax is the maximum system angular
momentum quantum number, req the single-electron equilibrium distance, λr is the Lyapunov exponent, τ is the level half-life,
Ω is the system rotational angular frequency, ν and ω are the stability indices and vibrational angular frequencies, respectively.
Number in parenthesis after a number denotes the power of 10 by which the number is to be multiplied.

Lmax req λr τ Ω νφ νθ ωφ/ωθ

1 0.5915 3.000 2.310(−1) 3.381 – - –

2 1.643 6.480(−1) 1.070 7.303(−1) – – –

3 3.220 23.362(−1) 2.935 2.662(−1) – – –

4 5.324 1.111(−1) 6.238 1.252(−1) – – –

5 7.952 6.086(−2) 1.139(+1) 6.859(−2) – – –

6 11.11 3.687(−2) 1.880(+1) 4.155(−2) – – –

50 670.4 7.862(−5) 7.822(+3) 8.861(−5) 4.383 4.085 0.9320

150 5.955(+3) 2.970(−6) 2.070(+5) 3.348(−6) 4.383 4.085 0.9320

400 4.217(+4) 1.576(−7) 3.903(+6) 1.776(−7) 4.383 4.085 0.9320

Table 2. Rovibronic spectrum for H2− dianion. All quantities are in atomic units. Lmax is the system maximum angular
momentum quantum number, E0 is the zero-order system energy, ω and m are the vibrational angular frequencies and quantum
numbers, respectively, and Etot is the system total energy. Number in parenthesis after a number denotes the power of 10 by
which the number is to be multiplied.

Lmax −E0 ωφ ωθ mφ mθ −Etot

1 1.072 2.359 2.198 – – 1.072

2 1.286(−1) 5.095(−1) 4.748(−1) – – 1.286(−1)

3 6.562(−2) 1.857(−1) 1.73(−1) – – 6.562(−2)

4 3.970(−2) 8.735(−2) 8.141(−2) – – 3.970(−2)

5 2.657(−2) 4.784(−2) 4.459(−2) – – 2.657(−2)

6 1.903(−2) 2.899(−2) 2.701(−2) – – 1.903(−2)

50 3.152(−4) 6.181(−5) 5.761(−5) 0 0 2.555(−4)

150 3.549(−5) 2.254(−6) 2.176(−6) 0 0 3.327(−5)
150 3.549(−5) 2.254(−6) 2.176(−6) 1 0 3.102(−5)
150 3.549(−5) 2.254(−6) 2.176(−6) 0 1 3.109(−5)
150 3.549(−5) 2.254(−6) 2.176(−6) 1 1 2.884(−5)

250 1.281(−5) 4.889(−7) 4.720(−7) 0 0 1.233(−5)
250 1.281(−5) 4.889(−7) 4.720(−7) 1 0 1.184(−5)
250 1.281(−5) 4.889(−7) 4.720(−7) 0 1 1.186(−5)
250 1.281(−5) 4.889(−7) 4.720(−7) 1 1 1.137(−5)

250 1.281(−5) 4.889(−7) 4.720(−7) 2 1 1.088(−7)
250 1.281(−5) 4.889(−7) 4.720(−7) 1 2 1.090(−7)
250 1.281(−5) 4.889(−7) 4.720(−7) 2 2 1.041(−7)

note the large values of the half-life τ for the highly ex-
cited states. As mentioned above, this result appears both
counter-intuitive and general. The frequency ratio (last
column) is very close to the value one would obtain from
the approximate formula (22) (0.9278).

We now calculate the energy spectrum of these rovi-
bronic states. Formula (27), as it stands, requires solving
an implicit equation with respect to the energy. In the case
at hand (circular zero-order paths) it reduces practically

to simply evaluating the rotational and vibrational parts
separately and superimpose the latter on the former. In
Table 2 we show part of the rovibronic spectrum for H2−.

We notice that although the harmonic oscillatory
modes are excited only after L ≈ 50, unharmonic vibra-
tions might exist below this limit. The corresponding spec-
trum in this region could be calculated from equations
similar to equation (12), but with higher-order terms in
the deviations included. We do not pursue, however, the
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Table 3. The same as in Table 1 but for the semiclassical model for He− anion.

Lmax req λr τ Ω νφ νθ ωφ/ωθ

1 1.757(−1) 2.667(+1) 2.599(−2) 2.276(+1) – – –

2 4.817(−1) 5.760 1.203(−1) 4.917 – - –

3 9.567(−1) 2.099 3.302(−1) 1.792 – – –

4 1.582 9.877(−1) 7.018(−1) 8.431(−1) – - –

5 2.363 5.410(−1) 1.281 4.617(−1) – - –

150 1.769(+3) 2.640(−5) 3.075(+4) 2.254(−5) 5.492 5.299 0.9649

400 1.253(+4) 1.401(−6) 5.796(+5) 1.196(−6) 5.491 5.299 0.9650

Table 4. The same as in Table 2 but for the rovibronic spectrum for He− anion.

Lmax −E0 ωφ ωθ mφ mθ −Etot

1 4.048 – – – – 4.048

2 1.457 – – – – 1.457

3 7.435(−1) – – – – 7.435(−1)

4 4.498(−1) – – – – 4.498(−1)

5 3.011(−1) – – – – 3.011(−1)

150 4.021(−4) 1.627(−5) 1.901(−5) 0 0 3.845(−4)

400 5.678(−5) 1.045(−6) 1.009(−6) 0 0 5.575(−5)
400 5.678(−5) 1.045(−6) 1.009(−6) 1 0 5.471(−5)
400 5.678(−5) 1.045(−6) 1.009(−6) 0 1 5.475(−5)
400 5.678(−5) 1.045(−6) 1.009(−6) 1 1 5.370(−5)

investigations beyond the first-order perturbation theory
here. Similarly, higher-order harmonics could be included
for large L, too.

3.2 Helium anion

Similarly to the hydrogen dianion case, we estimate that
for exciting zero-mode vibrations one has L > 125, and
for m = 1 modes the condition L > 375. In Table 3 we
show some of the system characteristic features.

As in the previous case, we notice good accuracy of the
formula (22), which would yield 0.9639, instead of 0.9650
(see the last column in Table 3). By comparing the results
for the hydrogen dianion (Table 1) and those in Table 3,
one notices that the half-life decreases as the charge in-
creases, although the stability indices increase (columns 4
and 6, 7). This is in accordance with formula (19), which
together with equations (3,17) yields

λr ∼

(
Z

L

)3
, Z, L� 1, (28)

The calculated spectrum has been shown in Table 4.
No experimental results or calculations have been re-

ported on the triply highly excited helium anion. In [10]
theoretical results for n = 2 triply excited states have been

calculated. For 2p3 2Do the energy is E = −0.7186 au and
estimated level width Γ = 0.01036 au, that corresponds
to a half-life of 96.5 au. For 2s2p2 2P E = −0.7094 au
and τ = 344.5 au (see, also, [23] and references therein).
Clearly, disagreement with the semiclassical results, for
both the energies (second column in Table 4) and half-lives
(fourth column in Table 3), are enormous, as expected for
these low-lying states.

3.3 Lithium atom

For the lithium atom (Z = 3) results are shown in Tables 5
and 6. We find, according to (24), the corresponding lower
values for L : 88 (m = 0), 210 (m = 1) and 438 (m = 2).

Comparing numerical values for the stability indices
in Tables 1, 3, 5, one sees that they change little with
Z. Also, the frequences ratio (last column) appears close
to one, even for this relatively small Z. This is another
indication of the well-known fact that the electron mutual
correlations diminish as the force exerted by the nucleus
becomes stronger.

As for the experimental evidence, the situation appears
similar to the helium case. In [33] the photon-induced
transition in lithium 1s22s(2S) → 2s22p(2P ) has been
observed, with Γ ≈ 0.20 eV, that yields for the half-life
τ ≈ 136 au, as compared with 4.395 ·10−2 au in the fourth
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Table 5. The same as in Table 1 but for the semiclassical model for Li atom.

Lmax req λr τ Ω νθ νφ ωφ/ωθ

1 1.032(−1) 7.301(+1) 9.493(−3) 5.814(+1) – – –

2 2.866(−1) 1.577(+1) 4.395(−2) 1.256(+1) – – –

3 5.618(−1) 5.747 1.206(−1) 4.577 – – –

4 9.287(−1) 2.704 2.563(−1) 2.153 – – –

5 1.387 1.481 4.680(−1) 1.179 – – –

100 4.632(+2) 2.428(−4) 2.855(+3) 1.933(−4) 5.646 5.783 0.9764

250 2.878(+3) 1.568(−5) 4.422(+4) 1.248(−5) 5.649 5.785 0.9764

500 1.148(+4) 1.965(−6) 3.527(+5) 1.565(−6) 5.649 5.781 0.9764

Table 6. The same as in Table 2 but for the rovibronic spec-
trum for Li atom.

Lmax −E0 ωθ ωφ mθ mφ −Etot

1 1.174(+1) – – – – 1.174(+1)

2 4.226 – – – – 4.226

3 2.156 – – – – 2.156

4 1.304 – – – – 1.304

5 8.736(−1) – – – – 8.736(−1)

100 2.615(−3) 1.737(−4) 1.779(−4) 0 0 2.439(−3)

250 4.209(−4) 1.122(−5) 1.149(−5) 0 0 4.095(−4)
250 4.209(−4) 1.122(−5) 1.149(−5) 1 0 3.983(−4)
250 4.209(−4) 1.122(−5) 1.149(−5) 0 1 3.981(−4)
250 4.209(−4) 1.122(−5) 1.149(−5) 1 1 3.868(−4)

500 1.054(−4) 1.407(−6) 1.440(−6) 0 0 1.040(−4)
500 1.054(−4) 1.407(−6) 1.440(−6) 1 0 1.025(−4)
500 1.054(−4) 1.407(−6) 1.440(−6) 0 1 1.026(−4)
500 1.054(−4) 1.407(−6) 1.440(−6) 1 1 1.011(−4)
500 1.054(−4) 1.407(−6) 1.440(−6) 2 2 9.828(−5)

column of Table 5. The calculated energy Eo = 150.28 eV
of the resonance position corresponds to E2 = −1.955 au,
that is to be compared with −4.226 au in column 2 in Ta-
ble 6. We mention also the experimental results by Azuma
et al. [34] on the photon-induced triply excited states of
lithium. The experiment detected a great number of res-
onant states above the 2s22p 2P o resonance at 142.3 eV.
Resonance structures have been attributed to mixtures of
electronic configurations, which include states from n = 2
to n = 5. Obviously, if a comparison with semiclassical
results is to be made, a more appropriate classification
scheme must be adopted, as mentioned above.

4 Concluding remarks

We have calculated rovibronic spectra and stability in-
dices for triply excited trielectronic systems, within the

semiclassical plane model. For the lower states, which do
not allow for the vibronic modes, only rotor-like kine-
matic is possible. For the sufficiently high excitations vi-
brational motion sets in. This is an atomic analogue to
the polyatomic molecular semiclassical models, but based
on the single-electron ansatz (see, e.g., [46] and refer-
ences therein for the collective coordinates quantization
scheme). It should be noted here, however, that we have
not treated our trielectronic system as a rigid rotator, un-
like Herrick’s approach [47], for in the Coulombic case one
cannot speak of a rigid structure.

There are other possible classical configurations that
may be used for the semiclassical calculations. One class
of these structures would be isosceles triangles rotators
(what would imply intershell states), with the rotational
axis in the triangle plane (Langmuir-like rotator, see,
e.g., [8]). The same procedure used for the coplanar struc-
ture can be applied, and the rovibrational spectra derived.

In the low-lying levels case the semiclassical theory,
at least within the model applied here, greatly underes-
timate both the energies and half-lives of these states. In
the case of the energy estimates it is understandable, for
the semiclassical model rests on the classical configura-
tion which minimizes the electron potential, unlike the
quantum-mechanical approach. As for the stability prop-
erties the simple semiclassical models are not capable to
account for subtle effects, like wave function symmetry
properties, which govern the transitions probabilities and
thus determine the excited states half-lives. On the other
hand, as the degree of excitation rises, these quantum-
mechanical features tend to be smeared out and the semi-
classical approach becomes both legitimate and increas-
ingly accurate. It is, therefore, desirable that measure-
ments of higher triple excitations, to n ≥ 5, are carried
out.

The classical radii of these highly excited states ap-
pear enormous by the ordinary standards within the
atomic world, being of the order of 104 ao. Such meso-
scopic species are hardly observable under the standard
laboratory conditions and may exist only in the interstel-
lar space [19]. Since hydrogen and helium are the most
abundant elements, the existence of their negative ions in
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the triply highly excited states may be detected via the
corresponding radio emissions.

Present calculations may be extended to higher Z-
values, but considering the above-mentioned conditions
for detecting such states this extension does not appear
appealing at the moment. On the other hand, extension
to quadruply and even higher-multiplicity excited states
could be made in a straightforward manner, within the
present model. Because the latter is based on the balance
between the attractive net Coulombic interaction and the
centrifugal force, in the case of four electrons, for instance,
the equilibrium configuration appears either a tetrahedral
three-dimensional rotational structure, or rotational par-
allelograms. Of course, the restriction to rotating struc-
tures does not hold within the quantum-mechanical the-
ory and the nonrotating tetrahedral configuration can be
realized for 5So-symmetry, for example [48]. The present
approach can be extended to nonrotating structures, like
those indicated by Bao [3], as mentioned in the introduc-
tion. Although the total angular momentum may be small,
even zero, individual electron angular momenta appear
large close to the total ionization (fragmentation) thresh-
old and the semiclassical theory is applicable.

Further possible extension of the model within the
intrashell states would be the inclusion of the noncircu-
lar orbits, not very close to zero-eccentricity ellipses. The
essence of the approach would not change, however, but
one could no longer speak of a rovibrational structure,
since the skeleton, zero-order configuration has no con-
stant angular velocity and the electrons would execute a
sort of breathing quasirotational motion.
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39. P. Grujić, N. Simonović, Phys. Rev. A 50, 4386 (1994).
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